Quest for Mathematics I (E2): Exercise sheet 2

- 1. Giving your argument,
 - (a) evaluate $\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$;
 - (b) evaluate $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$;
 - (c) express 0.343434... as a fraction.
- 2. Do the following series converge or diverge (you should justify your answer):
 - (a) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ (where x is any real number);

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^5};$$

- (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Hint: Consider pairing terms.
- 3. Consider the following series:

$$x + x(1-x)^{2} + x(1-x)^{4} + x(1-x)^{6} + \dots$$

- (a) Determine the interval I on which the series converges.
- (b) For $x \in I$, evaluate the limit, f(x) say, and plot this as a graph.
- (c) For $x \in I$, state whether the function f is: continuous; discontinuous, but admits left or right limits; or is discontinuous in some other way.
- 4. The function

$$f(x) = \frac{x^3 - x^2}{x^3 - x}$$

is well-defined and continuous wherever $x^3 - x \neq 0$. For points where $x^3 - x = 0$, deduce the value that should be assigned to f at x to ensure the function is continuous there, or explain why there is no such value.

5. Identify the point(s) of discontinuity of the following function:

$$f(x) = \left\lfloor \frac{1 - x^2}{1 + x^2} \right\rfloor.$$

For each of the point(s), briefly describe the nature of the discontinuity (e.g. jump type, removable, asymptotic, etc).